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Abstract—Localized incomplete multiple kernel k-means (LI-1

MKKM) is recently put forward to boost the clustering accuracy2

via optimally utilizing a quantity of prespecified incomplete base3

kernel matrices. Despite achieving significant achievement in a4

variety of applications, we find out that LI-MKKM does not5

sufficiently consider the diversity and the complementary of6

the base kernels. This could make the imputation of incom-7

plete kernels less effective, and vice versa degrades on the8

subsequent clustering. To tackle these problems, an improved LI-9

MKKM, called LI-MKKM with matrix-induced regularization10

(LI-MKKM-MR), is proposed by incorporating a matrix-induced11

regularization term to handle the correlation among base kernels.12

The incorporated regularization term is beneficial to decrease13

the probability of simultaneously selecting two similar kernels14

and increase the probability of selecting two kernels with mod-15

erate differences. After that, we establish a three-step iterative16

algorithm to solve the corresponding optimization objective and17

analyze its convergence. Moreover, we theoretically show that18

the local kernel alignment is a special case of its global one with19

normalizing each base kernel matrices. Based on the above obser-20

vation, the generalization error bound of the proposed algorithm21

is derived to theoretically justify its effectiveness. Finally, exten-22

sive experiments on several public datasets have been conducted23

to evaluate the clustering performance of the LI-MKKM-MR.24
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As indicated, the experimental results have demonstrated that 25

our algorithm consistently outperforms the state-of-the-art ones, 26

verifying the superior performance of the proposed algorithm. 27

Index Terms—Incomplete kernel learning, multiple kernel 28

clustering (MKC), multiple view learning. 29

I. INTRODUCTION 30

MULTIPLE kernel clustering (MKC) [1]–[8] sufficiently 31

integrates a number of precalculated base kernel matri- 32

ces to group samples into clusters, where similar samples 33

are in the same cluster while dissimilar ones are partitioned 34

into different ones. MKC has attracted much attention of 35

the data mining researchers and has been widely studied in 36

recent years [9]–[17]. The seminal work in [9] extends the 37

multiple kernel learning from supervised learning to unsuper- 38

vised learning and proposes a margin-based MKC algorithm. 39

It jointly optimizes the optimal kernel, the maximum mar- 40

gin hyperplane, and the optimal clustering labels. The widely 41

used kernel k-means method has been extended in [18] for 42

clustering analysis, where an optimal kernel is learned from 43

multiple data sources. Similarly, the work in [12] extends 44

the existing multiple kernel k-means (MKKM) algorithm by 45

designing a localized MKKM one in order to well utilize 46

the characteristics of each individual sample. To enhance the 47

robustness of the existing MKKM algorithms to noisy data, 48

Du et al. [13] proposed a robust MKKM algorithm by substi- 49

tuting the widely adopted squared error in the existing k-means 50

with an �2,1-norm one, and simultaneously optimized the best 51

combination of kernels. To increase the diversity and decrease 52

the redundancy of the selected base kernels, the recent work 53

in [14] extends the existing MKKM algorithms by designing a 54

matrix-induced regularization term to sufficiently explore the 55

correlation among the prespecified base kernels. More recently, 56

an optimal neighborhood kernel clustering (ONKC) algorithm 57

is proposed in [19], where the representability of the optimal 58

kernel to learn is largely boosted and the negotiation between 59

kernel learning and clustering is also reinforced. The afore- 60

mentioned MKC algorithms have been applied into many cases 61

and reached a superior performance [15], [20]–[23]. 62

As observed, these MKC algorithms share a common 63

assumption: all the prespecified base kernels are com- 64

plete. Nevertheless, in some real-world applications, such as 65

image fusion [24], image retrieval [25], and document/video 66

analysis [26], some views of a sample are usually not 67

collected due to various reasons [27], [28]. To address 68
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this issue, the work in the literature proposes to first69

impute the missing elements in base kernel matrices with70

imputation methods and then performs the existing MKC71

on these imputed kernels. Several commonly used filling72

methods include zero-filling, mean value filling, k-nearest-73

neighbor filling (KNN), expectation-maximization (EM) fill-74

ing [29], as well as several recently proposed to matrix75

imputation [30]–[33].76

One disadvantage existing in the aforementioned “two-77

stage” algorithms is that the imputation is separated from the78

subsequent clustering. As a result, this may not be conducive79

to mutual negotiation between the imputation and clustering to80

reach the best performance. To overcome the above issue, the81

more recent literature [34]–[36] advocates to unify the learn-82

ing procedure of imputation and clustering into a common83

framework, with the aim to learn an optimal imputation that84

best severe for the clustering tasks.85

Although demonstrating superior clustering results in sev-86

eral practical applications, we find that these works do not87

sufficiently consider the redundancy and diversity among88

prespecified kernel matrices when performing incomplete89

MKC. This could lead to high redundancy and low diver-90

sity among the selected kernels [14], making the utilization91

ratio of these base kernel matrices insufficient and con-92

versely decreasing the accuracy of clustering tasks. In our93

work, a localized incomplete MKKM with matrix-induced94

regularization (LI-MKKM-MR) is proposed to address the95

above-mentioned issue. By incorporating matrix-induced reg-96

ularization, LI-MKKM-MR is able to avoid selecting two97

similar kernel matrices simultaneously and increase the prob-98

ability of selecting two kernel matrices with large diversity,99

making the base kernels better utilized for clustering. In addi-100

tion, it inherits the advantage of localized incomplete multiple101

kernel k-means (LI-MKKM) which only requires that the102

similarity of each sample to its top k-nearest neighbors be103

optimally aligned with the corresponding patch of the entire104

ideal similarity. This is helpful for LI-MKKM-MR to pay105

more attention on closer pairwise sample similarities that shall106

be put together, and prevents involving unreliable similarity107

evaluation for farther sample pairs. Furthermore, a three-step108

iterative optimization algorithm is designed to solve the corre-109

sponding optimization objective and its convergence has also110

been analyzed. After that, the generalization error bound of the111

clustering algorithm is derived, which theoretically guarantees112

its effectiveness. Comprehensive experiments on several pub-113

lic datasets have been conducted to evaluate the clustering114

performance of the proposed LI-MKKM-MR. As demon-115

strated, LI-MKKM-MR significantly and consistently outper-116

forms the existing two-step-based algorithms and the newly117

proposed algorithm [36]. Extensive experimental results have118

demonstrated the superiority of involving the matrix-induced119

regularization.120

To summarize, this work makes the following major121

contributions.122

1) This is the first attempt to identify the kernel redun-123

dancy problem in incomplete MKC. We then introduce124

a new algorithm to improve LI-MKKM by integrating125

matrix-induced regularization to select low-redundant126

and high-diverse kernel matrices and carefully establish 127

three-step iterative algorithm to solve the corresponding 128

optimization objective. 129

2) We build the theoretical connection between global and 130

local kernel alignment criteria, then we further derive the 131

generalization error bound of the proposed LI-MKKM- 132

MR, which theoretically justifies its effectiveness. 133

3) Comprehensive experiments on ten public datasets have 134

demonstrated that our LI-MKKM-MR achieves the 135

state-of-the-art performance compared with the exist- 136

ing advanced algorithms. This considerably verifies our 137

identification of the aforementioned issue and the effec- 138

tiveness of our solution. 139

Finally, we clarify the differences between LI-MKKM-MR 140

and several recently proposed related work [14], [35]. The 141

differences between LI-MKKM [35] and LI-MKKM-MR can 142

be summarized from the following three aspects. 143

1) LI-MKKM [35] does not sufficiently consider the diver- 144

sity and the complementarity of these incomplete base 145

kernels. This could make the imputation of incomplete 146

kernels less effective, and incur the adverse effect on 147

the subsequent clustering. Differently, LI-MKKM-MR 148

is proposed by incorporating matrix-induced regulariza- 149

tion, which is helpful to reduce the probability of simul- 150

taneously selecting two similar kernels and increase the 151

probability of selecting two kernels with moderate dif- 152

ferences, making the base kernels better utilized for 153

clustering. 154

2) Compared to LI-MKKM [35], LI-MKKM-MR pro- 155

vides the generalization error analysis, which measures 156

the clustering performance of the learned clusters in 157

the training procedure on unseen samples. This the- 158

oretically justifies the effectiveness of the proposed 159

LI-MKKM-MR. 160

3) As observed from the experimental results in Section IV, 161

LI-MKKM-MR significantly improves the clustering 162

performance of LI-MKKM [35] in various benchmark 163

datasets, which well validates our identification of the 164

aforementioned issue in LI-MKKM and the effectiveness 165

of our solution. 166

We then summarize the differences between [14] and our 167

work from the following aspects. In [14], matrix-induced 168

regularization is proposed to solve the kernel redundancy 169

in MKC. However, it cannot effectively solve MKC with 170

incomplete kernels. Differently, the proposed LI-MKKM-MR 171

makes the first attempt to identify the kernel redundancy 172

problem in incomplete MKC, proposes an effective solu- 173

tion, and conducts comprehensive experiments to validate 174

our identification of this issue and the superiority of our 175

algorithm. 176

II. RELATED WORK 177

In this part, we mainly introduce the methods of MKKM 178

clustering, MKKM with incomplete kernels (MKKM-IK), and 179

its localized variant. Before introducing these algorithms, we 180

present all notations which will be used in the following in 181

Table I. 182
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TABLE I
NOTATIONS SUMMARY

A. Multiple Kernel k-Means183

Let {xi}n
i=1 ⊆ X be n training samples, and φp(·) : x ∈ X �→184

Hp, x are mapped onto a reproducing kernel Hilbert space185

Hp (1 ≤ p ≤ m) by the pth feature. Each sample in MKC186

is represented by φγ (x) = [γ1φ
�
1 (x), . . . , γmφ�

m (x)]�, where187

γ = [γ1, . . . , γm]� represents the weights of m prespecified188

base kernel functions {κp(·, ·)}m
p=1. These kernel weights will189

be adaptively adjusted during MKC. Under the aforementioned190

definition of φγ (x), the corresponding kernel function can be191

expressed as follows:192

κγ

(
xi, xj

) = φ�
γ (xi)φγ (xj) =

m∑

p=1

γ 2
p κp

(
xi, xj

)
. (1)193

One can calculate a kernel matrix Kγ on training samples194

{xi}n
i=1 with the kernel function defined in (1). As a result, the195

objective of MKKM with Kγ is formulated as196

min
H,γ

Tr
(

Kγ

(
In − HH�))

197

s.t. H�H = Ik, γ �1m = 1, γp ≥ 0 ∀p (2)198

where H ∈ R
n×k is a soft version of the cluster assignment199

matrix, and Ik is a k × k identity matrix. Alternately updating200

H and γ can optimize (2).201

Optimizing H With Fixed γ : With γ fixed, the optimization202

in (2) toward H is exactly the traditional kernel k-means203

presented in204

max
H

Tr
(

H�Kγ H
)

s.t. H ∈ R
n×k, H�H = Ik. (3)205

The optimal H in (3) consists of k eigenvectors correspond-206

ing to the top-k eigenvalues of Kγ [37].207

Optimizing γ With Fixed H: With H fixed, the equivalent208

form of optimization in (2) with regard to γ is as follows:209

min
γ

m∑

p=1

γ 2
p Tr

(
Kp

(
In − HH�)) s.t. γ �1m = 1, γp ≥ 0 (4)210

which has a closed-form solution.211

B. MKKM With Incomplete Kernels 212

MKKM has recently been extended to handle incomplete 213

MKC in [34] and [36]. Previous algorithms first manage to 214

impute the incomplete kernel matrices and then apply the 215

existing MKKM on the imputed kernel matrices. In con- 216

trast, they propose to unify the learning process of imputation 217

and clustering into a common learning framework and estab- 218

lish an effective optimization algorithm to optimize each of 219

them alternately. In MKKM-IK, the clustering procedure pro- 220

vides a guidance for the imputation of the incomplete base 221

kernel matrices, and the clustering is further enhanced by the 222

imputed kernels. Both procedures are alternated performed 223

until achieving optimal results. The above idea can be achieved 224

as follows: 225

min
H, γ , {Kp}m

p=1

Tr
(

Kγ (In − HH�)
)

226

s.t. H ∈ R
n×k, H�H = Ik 227

γ �1m = 1, γp ≥ 0 228

Kp(ep, ep) = K(dd)
p , Kp � 0 ∀p (5) 229

where ep (1 ≤ p ≤ m) denotes the sample indices, the p-th 230

view is observed, and K(dd)
p denotes the kernel submatrix. Note 231

that we impose the constraint Kp(ep, ep) = K(dd)
p to make 232

the known entries of Kp kept unchanged during the learning 233

course. The imputation of incomplete kernels can be regarded 234

as a by-product of learning, because the ultimate goal of (5) 235

is clustering. 236

A trilevel optimization strategy developed in [34] develops 237

to solve (5) alternately. 238

Optimizing H With γ and {Kp}m
p=1 Fixed: Given γ and 239

{Kp}m
p=1, the optimization in (5) with respect to H is equivalent 240

to a kernel k-means problem solved by (3). 241

Optimizing {Kp}m
p=1 With γ and H Fixed: Given γ and H, 242

(5) toward each Kp is equivalently reformulated as follows: 243

min
Kp

Tr
(

Kp(In − HH�)
)

244

s.t. Kp
(
ep, ep

) = K(dd)
p , Kp � 0. (6) 245

It is proven in [34] that the optimal Kp in (6) has the closed- 246

form solution as in (7), shown at the bottom of the page, where 247

Z = In − HH� and taking the elements of Z corresponding 248

to the observed and unobserved sample indices can construct 249

Z(dm). For more details, refer to [34]. 250

Optimizing γ With H and {Kp}m
p=1 Fixed: Given H and 251

{Kp}m
p=1, (5) with respect to γ reduces to a quadratic pro- 252

gramming (QP) with linear constraints. 253

C. Localized Incomplete MKKM 254

Although it is ingenious to unify clustering and imputation 255

into one learning process, which is achieved by globally max- 256

imizing the alignment between the optimal kernel matrix Kγ 257

Kp =
[

K(dd)
p −K(dd)

p Z(dm)(Z(mm))−1

−(Z(mm))−1Z(dm)�K(dd)
p (Z(mm))−1Z(dm)�K(dd)

p Z(dm)(Z(mm))−1

]

(7)
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and the ideal matrix HH�, as presented in (2). This crite-258

rion does not take full advantage of the local distribution of259

data, and requires that all paired samples, whether closer or260

farther, should be consistent with the ideal similarity without261

distinction.262

Instead of calculating the alignment between the optimal263

kernel and the idea matrix in a global manner as in (5),264

localized incomplete MKKM (LI-MKKM) [35] is proposed265

to utilize the local structure among data by only requiring266

the similarity of each sample to align with its nearest neigh-267

bors. Specifically, the objective function of LI-MKKM is as268

follows:269

min
γ , {Kp}m

p=1,H

n∑

i=1

Tr
(

Kγ

(
A(i) − A(i)HH�A(i)

))
270

s.t. H ∈ R
n×k, H�H = Ik, γ �1m = 1, γp ≥ 0271

Kp
(
ep, ep

) = K(dd)
p , Kp � 0 ∀p (8)272

where A(i) = U(i)U(i)� with U(i) ∈ {0, 1}n×round(n∗τ) (1 ≤ i ≤273

n) denoting the neighborhood index matrix of the ith sample.274

U(i)
jv = 1 represents that xj is the vth nearest neighbor of xi,275

where 1 ≤ v ≤ round(n ∗ τ) and τ is the ratio of the nearest276

neighbors.277

Similar to [34], the work in [35] develops a tristep278

optimization algorithm to solve (8) and theoretically proves279

its convergence. Refer to [35] for more details.280

III. LOCALIZED INCOMPLETE MULTIPLE KERNEL281

k-MEANS WITH MATRIX-INDUCED REGULARIZATION282

A. Formulation283

Although aligning the optimal kernel with the ideal similar-284

ity locally can improve the clustering performance, LI-MKKM285

dose not explicitly take the correlation among base kernels286

into account. This would prevent these incomplete base ker-287

nels from being well utilized. To overcome this problem, we288

propose an improved algorithm based on LI-MKKM via intro-289

ducing matrix-induced regularization γ �Mγ to decrease the290

redundancy and enhance the diversity of the selected base ker-291

nels, where Mpq measures the correlation between Kp and292

Kq. By integrating this regularization into (8), the following293

objective is obtained:294

min
γ , {Kp}m

p=1,H

n∑

i=1

Tr
(

Kγ (A(i) − A(i)HH�A(i))
)

+ λ

2
γ �Mγ295

s.t. H ∈ R
n×k, H�H = Ik296

γ �1m = 1, γp ≥ 0297

Kp(ep, ep) = K(dd)
p , Kp � 0 ∀p (9)298

where λ is a hyper-parameter to balance the regularization on299

kernel weights and the loss of local kernel k-means.300

In this work, we adopt Mpq = Tr(KpKq) to measure the cor-301

relation between Kp and Kq. On one hand, the incorporation of302

γ �Mγ is helpful for well utilizing the base kernels, which is303

utilized to boost the clustering performance. On the other hand,304

it makes the resultant optimization more challenging since the305

optimization on each Kp is a quadratic semi-defined program-306

ming, whose computational cost is intensive and this prevents307

it from being applied to practical applications. To reduce the 308

computation overhead of (9), we propose to approximate Mpq 309

by M̃pq = Tr(K(0)
p K(0)

q ) and keep it unchanged during the 310

learning course, where K(0)
p is an initial imputation of Kp. By 311

substituting M with M̃, the objective function of the proposed 312

LI-MKKM-MR can be expressed as follows: 313

min
γ , {Kp}m

p=1,H

n∑

i=1

Tr
(

Kγ

(
A(i) − A(i)HH�A(i)

))
+ λ

2
γ �M̃γ 314

s.t. H ∈ R
n×k, H�H = Ik 315

γ �1m = 1, γp ≥ 0 316

Kp(ep, ep) = K(dd)
p , Kp � 0 ∀p. (10) 317

It is reasonable to measure the correlation of pairwise ker- 318

nels via observed similarity. Consequently, the approximation 319

M̃ can be regarded as a prior of M. Also, although this 320

approximation is simple, its advantages are three-folds. First, 321

it fulfills our requirement on the kernel coefficients to enhance 322

the diversity and decrease the redundancy. Second, it simplifies 323

the optimization on {Kp}m
p=1, making it admit a closed-form 324

solution. This significantly increases the computational cost. 325

Third, the effectiveness of the proposed approximation can be 326

demonstrated by experiments. 327

Although the matrix-induced regularization may be 328

exploited in other related aspects, such as MKC [14], this 329

is the first work in literature to study the regularization on 330

incomplete MKC and design a reasonable approximation for 331

the convenience of computation. Moreover, this would trigger 332

more research on incomplete MKC, such as designing more 333

informative M, updating M with learned kernel weights and 334

the imputation at each iteration, to name just a few. More 335

importantly, our experimental study shows that the incorpo- 336

ration of matrix-induced regularization helps to utilize the 337

incomplete kernels, leading to significantly improvement on 338

clustering performance. This makes the proposed algorithm a 339

good choice in real-world applications, such as cancer biol- 340

ogy [12], analysis of multiple heterogeneous neuroimaging 341

data [38], and Alzheimer’s disease diagnosis [39]. In the fol- 342

lowing, we develop a tristep optimization strategy to solve it 343

alternately in the following parts. 344

B. Alternate Optimization of LI-MKKM-MR 345

Optimizing H With γ and {Kp}m
p=1 Fixed: Given γ 346

and {Kp}m
p=1, the optimization objective w.r.t H in (10) 347

redefines to 348

max
H

Tr

(

H�
n∑

i=1

(
A(i)Kγ A(i)

)
H

)

349

s.t. H ∈ R
n×k, H�H = Ik (11) 350

which is transformed into a classical kernel k-means-based 351

optimization objective and can be conveniently tackled by the 352

existing public toolkit. 353

Optimizing {Kp}m
p=1 With γ and H Fixed: Given γ and 354

H, the optimization objective w.r.t {Kp}m
p=1 in (10) can be 355
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formulated as356

min
{Kp}m

p=1

m∑

p=1

γ 2
p Tr

(

Kp

n∑

i=1

Tr
(

A(i) − A(i)HH�A(i)
))

357

s.t. Kp(ep, ep) = K(dd)
p , Kp � 0 ∀p. (12)358

It is difficult to solve the optimization problem in (12) since359

there are multiple kernel matrices to be optimized simultane-360

ously. By cautiously analyzing the optimization, we observe361

that: 1) each kernel matrix Kp has its own separate constraint362

and 2) the objective in (12) is a sum generated by calculating363

Kp. As a result, (12) can be reformulated as m uncorrelated364

subobjectives equivalently, as shown in the following:365

min
Kp

Tr(KpQ)366

s.t. Kp(ep, ep) = K(dd)
p , Kp � 0 (13)367

where Q = ∑n
i=1(A

(i) − A(i)HH�A(i)).368

It seems that directly solving (13) is difficult because369

of the equality and PSD constraints imposed on Kp. By370

following [35], we parameterize each Kp as:371

Kp =
[

K(dd)
p K(dd)

p Zp

Z�
p K(dd)

p Z�
p K(dd)

p Zp

]

(14)372

where Zp ∈ R
d×m. d and m refer to the number of observed373

samples and unobserved ones, respectively. With (14), we374

assume that the observed ones represent the missing kernel375

entries. It is shown in [35] that Kp in (14) automatically376

satisfies both constraints after this parametrization.377

Based on the parametrization in (14), the constrained378

optimization in (13) is equivalent to379

min
Zp

Tr

([
K(dd)

p K(dd)
p Zp

Z�
p K(dd)

p Z�
p K(dd)

p Zp

][
Q(dd) Q(dm)

Q(dm)� Q(mm)

])

(15)380

where Q is decomposed into the following submatrices381 [
Q(dd) Q(dm)

Q(dm)� Q(mm)

]

.382

To minimize (15), we take its derivative with respect to Zp383

and let it vanish, leading to384

Zp = −Q(dm)
(

Q(mm)
)−1

. (16)385

As a result, we obtain an analytical solution for the optimal386

Kp by substituting Zp in (16) into (14). As seen, (13) provides387

a guidance for the imputation of each base kernel by explor-388

ing the data structure in a local manner. Specifically, it locally389

estimates the alignment between the similarity of each sam-390

ple and its τ -nearest neighbors with the corresponding ideal391

matrix. This enables the proposed algorithm to better utilize392

the intracluster variations among samples. Therefore, the clus-393

tering performance could be improved, mainly attributing to394

an effective incomplete kernels imputation measure.395

Optimizing γ With {Kp}m
p=1 and H Fixed: Given {Kp}m

p=1396

and H, it is easy to present that (10) w.r.t. γ is as follows:397

min
γ

1

2
γ �(2W + λM̃

)
γ398

s.t. γ �1m = 1, γp ≥ 0 (17)399

Algorithm 1 Proposed LI-MKKM-MR

1: Input: {Kdd)
p }m

p=1, {ep}m
p=1, k, τ, λ and ε0.

2: Output: H, γ and {Kp}m
p=1.

3: Initialize γ (0) = 1m/m, {K(0)
p }m

p=1 and t = 1.
4: Generate U(i) for i-th samples (1 ≤ i ≤ n) by Kγ (0) .

5: Calculate A(i) = U(i)U(i)� for i-th samples (1 ≤ i ≤ n).
6: repeat

7: Kγ (t) = ∑m
p=1

(
γ

(t−1)
p

)2
K(t−1)

p .
8: Update H(t) by solving Eq. (11) with Kγ (t) .

9: Update {K(t)
p }m

p=1 with H(t) by Eq. (13).

10: Update γ (t) by solving Eq. (17) with H(t) and {K(t)
p }m

p=1.
11: t = t + 1.
12: until

(
obj(t−1) − obj(t)

)
/obj(t) ≤ ε0

where W = diag([Tr(K1Q), . . . , Tr(KmQ)]). Theorem 1 in 400

the following indicates that W is PSD. 401

Theorem 1: The Hessian matrix 2W + λM̃ in (17) is a 402

symmetric PSD matrix. 403

Proof: By defining H = [h1, . . . , hk], we can find out that 404

HH�hc = hc( 1 ≤ c ≤ k) since H�H = Ik. This indicates 405

that HH� has k eigenvalue with 1. Besides, its rank does 406

not exceed k. This means that its has n − k eigenvalue with 407

0. In − HH� contains n − k eigenvalue with 1 and k eigen- 408

value with 0. Consequently, A(i)(In−HH�)A(i) is PSD, which 409

ensures that Q = ∑n
i=1(A

(i) − A(i)HH�A(i)) is PSD. As a 410

result, we have wp = Tr(KpQ) ≥ 0 ∀p, guaranteeing the posi- 411

tiveness of W. Meanwhile, W is also a symmetric PSD matrix 412

according to [40]. Consequently, 2W+λM̃ is a symmetric PSD 413

matrix. 414

On the basis of Theorem 1, we can guarantee that the 415

optimization in (17) w.r.t γ is a traditional QP with linear 416

constraints. Therefore, it can be conveniently handled by the 417

existing optimization packages. 418

Algorithm 1 presents an outline of solving (10) by the 419

proposed algorithm, where we adopt the zero-filling method 420

to initially impute the missing elements of {K(0)
p }m

p=1 and uti- 421

lize obj(t) to represent the objective value at the t-th iteration. 422

Besides, the neighbors of each sample remain unvaried during 423

the optimization procedure in LI-MKKM-MR. In specific, we 424

calculate the τ -nearest neighbors of each sample by Kγ (0) . 425

In this way, the optimization target of LI-MKKM-MR is 426

guaranteed to be reduced in a monotonic manner when we 427

update one variable and keep the others unchanged itera- 428

tively. Simultaneously, the objective is lower bounded by zero. 429

Hence, it is guaranteed that LI-MKKM-MR converges into a 430

local optimal solution. Experimental results have demonstrated 431

that our method usually converges quickly. 432

The end of this part analyzes the computational complexity 433

of our method. In specific, the computational complexity of LI- 434

MKKM-MR is O(n3 +∑m
p=1 n3

p +m3) at each iteration, where 435

np (np ≤ n) and m refer to the number of observed samples of 436

Kp and base kernels. The complexity of LI-MKKM-MR can 437

be compared to that of MKKM-IK [34] and LI-MKKM [35]. 438

Moreover, each sample of Kp is independent so that they can 439
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be measured in a parallel manner. By this means, our LI-440

MKKM-MR can scale well regardless of the variation of the441

base kernels number.442

C. Theoretical Results443

The generalization error of the k-means clustering algorithm444

has been widely discussed in the existing literature [36], [41],445

and [42]. We first establish the theoretical connection between446

the existing MKKM-IK [36] with LI-MKKM-MR, and fur-447

ther derive the generalization error bound of LI-MKKM-MR448

based on the theoretical results in [36]. The following theorem449

(Theorem 2) points out that the local kernel alignment adopted450

in our LI-MKKM-MR can be achieved by normalizing each451

base kernel matrix.452

Theorem 2: The local kernel alignment criterion in (8) is453

equivalent to the widely adopted global kernel alignment by454

normalizing each base kernel matrix.455

Proof: The objective function in (8) can be written as456

n∑

i=1

Tr
(

Kγ

(
A(i) − A(i)HH�A(i)

))
457

=
n∑

i=1

〈
A(i) ⊗ Kγ , A(i) ⊗

(
I − HH�)〉

F
458

=
n∑

i=1

〈
A(i) ⊗ Kγ , I − HH�〉

F
459

=
〈(

n∑

i=1

A(i)

)

⊗ Kγ , I − HH�
〉

F

460

=
m∑

p=1

γ 2
p

〈(
n∑

i=1

A(i)

)

⊗ Kp, I − HH�
〉

F

461

=
m∑

p=1

γ 2
p

〈
K̃p, I − HH�〉

F
462

= Tr
(

K̃γ

(
I − HH�)) (18)463

where ⊗ denotes elementwise multiplication between two464

matrices, K̃p = (
∑n

i=1 A(i)) ⊗ Kp can be treated as a nor-465

malized Kp, and K̃γ = ∑m
p=1 γ 2

p K̃p. Consequently, by such466

normalization being applied on each base kernel, we can467

clearly see that the local kernel alignment criterion in (8) is468

exactly the global kernel alignment in [36]. This completes469

the proof.470

Let t(x(p)) = 1 if the pth view of x is available; oth-471

erwise, x(p) should be optimized. It is worth pointing out472

that t(x(p)) is a random variable that depends on x. Let473

Ĉ = [Ĉ1, . . . , Ĉk] be the k centroids and γ̂ be the kernel474

weights learned by LI-MKKM-MR. k-means clustering should475

make the reconstruction error small476

E

[
min

y∈{e1,...,ek}

∥∥∥φγ̂ (x) − Ĉy
∥∥∥

2

H

]
(19)477

where φγ̂ (x) = [γ̂1t(x(1))φ�
1 (x(1)), . . . , γ̂mt(x(m))φ�

m (x(m))]�,478

e1, . . . , ek form the orthogonal bases of Rk.479

We first define a function class480

F =
{

f : x �→ min
y∈{e1,...,ek}

∥∥φγ (x) − Cy
∥∥2
H
∣∣
∣γ �1m = 1, γp ≥ 0,481

C ∈ Hk, t(x(p)
i )t(x(p)

j )κ̃�
p (x(p)

i , x(p)
j ) ≤ b, ∀p ∀xi ∈ X

}
482

(20)483

where Hk represents the multiple kernel Hilbert space and 484

κ̃(·, ·) is a kernel function corresponding to K̃p. 485

Based on Theorem 2, we derive the generalization error 486

bound of the proposed LI-MKKM-MR by following [36]. 487

Theorem 3: For any δ > 0, with probability at least 1 − δ, 488

the following holds for all f ∈ F : 489

E
[
f (x)

] ≤ 1

n

n∑

i=1

f (xi) + 4
√

πmbG1n(γ , t)

n
+ 4

√
πmbG2n(γ , t)

n
490

+
√

8πbk2

√
n

+ 2b

√
log 1/δ

2n
(21) 491

where 492

G1n(γ , t) � Eγ

⎡

⎣sup
γ ,t

n∑

i=1

m∑

p,q=1

γipqt(x(p)
i )t(x(q)

i )γpγq

⎤

⎦ (22) 493

G2n(γ , t) = Eγ

⎡

⎣sup
γ ,t

n∑

i=1

k∑

c=1

m∑

p=1

γicpγpt
(

x(p)
i

)
⎤

⎦ (23) 494

and γipq, γicp, i ∈ {1, . . . , n}, p, q ∈ {1, . . . , m}, c ∈ {1, . . . , k} 495

are i.i.d. Gaussian random variables with zero mean and unit 496

standard deviation. 497

According to the analyses in [36], our local kernel alignment 498

criterion in (8), with normalized base kernel matrices, is an 499

upper bound of 1/n
∑n

i=1 f (xi). As a result, by minimizing 500

Tr(K̃γ (In − HH�)), one can obtain a small 1/n
∑n

i=1 f (xi) 501

for good generalization. This justifies the good generalization 502

ability of the LI-MKKM-MR. The detailed proof has been 503

presented in the supplementary material. 504

IV. EXPERIMENTS 505

A. Experimental Settings 506

In our experiments, we adopt ten widely used MKL bench- 507

mark datasets to verify the proposed algorithms, including 508

Oxford Flower17 and Flower102,1 Caltech102,2 Digital,3 509

Protein Fold Prediction,4 and Reuters.5 The information of 510

them is shown in Table II. The kernel matrices of these datasets 511

are precomputed and can be directly obtained from the afore- 512

mentioned link. Caltech102-5 refers to the number of samples 513

belonging to each cluster is 5, and the same for the rest 514

datasets. The publicly access codes for kernel k-means and 515

MKKM can be found in the website.6 516

Several well-known and widely used imputation methods, 517

such as zero filling (ZF), mean filling (MF), KNN, and 518

alignment-maximization filling (AF) are contained in [30]. 519

After that, researchers take the imputed kernel matrices as 520

the input of classical MKKM. The kind of two-stage methods 521

are called MKKM + ZF, MKKM + MF, MKKM + KNN, 522

1http://www.robots.ox.ac.uk/˜+vgg/data/flowers/
2http://files.is.tue.mpg.de/pgehler/projects/iccv09/
3http://ss.sysu.edu.cn/˜+py/
4http://mkl.ucsd.edu/dataset/protein-fold-prediction/
5http://kdd.ics.uci.edu/databases/reuters21578/
6https://github.com/mehmetgonen/lmkkmeans/
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(a) (b) (c)

(d) (e) (f)

Fig. 1. Clustering ACC, NMI, and purity comparison with the variation of missing ratios on Flower17 and Flower102 datasets. (a) ACC with missing ratios
on Flower17. (b) NMI with missing ratios on Flower17. (c) Purity with missing ratios on Flower17. (d) ACC with missing ratios on Flower102. (e) NMI
with missing ratios on Flower102. (f) Purity with missing ratios on Flower102.

TABLE II
DATASETS SUMMARY

and MKKM + AF, respectively. Also, the newly proposed523

MKKM-IK [34], LI-MKKM [35], MVEC [43], and CG-524

IMVC [44] are also incorporated as strong baselines. The525

algorithms in [31], [32], and [45] are not incorporated into526

our experimental comparison since that these algorithms only527

consider the missing of input features, rather than the rows or528

columns of base kernel matrices in our case.529

In the experiment, ε is used to denote the percentage of530

incomplete samples. Intuitively, the clustering performance531

will become less accurate when the value of ε is increas-532

ing. In our simulation, we set ε as [0.1 : 0.1 : 0.9] on533

all the ten datasets. The performance metrics in this sim-534

ulation include the clustering accuracy (ACC), normalized535

mutual information (NMI), and purity. For each method, we536

present the best result among 50 trials, where each trial started537

from a random initialization state. As a result, the effect538

of randomness caused by k-means could be alleviated. We539

generate “incomplete” patterns randomly for ten times and 540

report the statistical results. For all datasets, the quantity 541

of clusters is given and set as the ground truth of classes. 542

The generation of the missing vectors {sp}m
p=1 follows the 543

approach in [34]: 1) randomly select round(ε ∗ n) samples 544

with the rounding function round(·); 2) generate a random 545

vector v = (v1, . . . , vk, . . . , vm), vk ∈ [0, 1] and a scalar 546

v0, v0 ∈ [0, 1] for each selected sample; 3) if vp ≥ v0, it 547

presents the pth view for this sample; and 4) if there is no 548

vp ≥ v0, generate a new v. Note that there is no requirement 549

on complete view for each sample. In this instance, the index 550

vector sp is obtained to list the samples with the presentation 551

on the pth view. 552

B. Experimental Results 553

Experiments on Flower17 and Flower102: Three 554

performance metrics, including: 1) the ACC; 2) NMI; 555

and 3) purity, of the testing algorithms with the variation 556

of missing ratios in [0.1, . . . , 0.9] on the Flower17 and 557

Flower102 datasets have been demonstrated in Fig. 1. We 558

have the following observations. 559

1) The newly proposed MKKM-IK [36] (in green) 560

has shown promising performance improvements 561

on the ACC, NMI, and purity compared to the 562

previous two-stage imputation methods. For exam- 563

ple, the MKKM + AF outperforms MKKM-IK by 564

0.1%, 0.6%, 2.5%, 2.8%, 4.1%, 4.7%, 6.0%, 8.5%, and 565

8.2% in terms of clustering accuracy on Flower17, 566

which clearly demonstrates the benefit of the joint 567

optimization on imputation and clustering. 568
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TABLE III
AGGREGATED ACC, NMI, AND PURITY COMPARISON (MEAN ± STD) OF DIFFERENT KINDS OF

CLUSTERING ALGORITHMS ON FLOWER17 AND FLOWER102 DATASETS

2) Also, LI-MKKM outperforms MKKM-IK by 8.4%,569

4.4%, 5.8%, 3.1%, 2.6%, 2.6%, 1.2%, 0.2%, and 2.2%570

on Flower17. This result clearly verifies that the utiliz-571

ing data’s local structure further boosts the clustering572

performance.573

3) Furthermore, our proposed LI-MKKM-MR (in red)574

significantly outperforms the LI-MKKM in all575

cases from Fig. 1(a)–(f) in the aspect of clus-576

tering performance. For example, LI-MKKM-MR577

further outperforms LI-MKKM by 8.5%, 11.2%,578

9.7%, 10.1%, 9.4%, 9.2%, 8.2%, 7.7%, and 3.6%. This579

result indicates the effectiveness of incorporating the580

matrix-induced regularization.581

4) In addition, our newly proposed method demonstrates582

stronger advantage when compared to previous ones,583

especially under low missing ratios. It is notable that584

in Fig. 1(a), when the missing ratio is extremely low585

(ε = 0.1), LI-MKKM-MR improves the second-best586

algorithm (LI-MKKM) by 8.5% in terms of clustering587

accuracy on Flower17.588

In Table III, the aggregated ACC, NMI, purity, and the589

standard deviation are reported, where we show the highest590

performance one in bold. Similarly, the results also illus-591

trate that MKKM + ZF, MKKM + MF, MKKM + KNN,592

MKKM + AF, and MKKM-IK are outperformed by the593

proposed algorithm. Specifically, the second-best one (LI-594

MKKM) is exceeded by the proposed LI-MKKM-MR by 7%.595

Experiments on the Caltech102 Dataset: Fig. 2 presents596

ACC, NMI, and purity of all the testing algorithms over vari-597

ational missing ratios on the Caltech102 datasets. We find598

out that the recently proposed MKKM-IK [36] (in green)599

achieves a comparable clustering performance with a represen-600

tative two-stage imputation method MKKM + AF, while the601

proposed LI-MKKM outperforms MKKM-IK with significant602

improvements on all the performance criterions, details can603

be found in Fig. 2(a)–(i). More precisely, LI-MKKM obtains604

6.4%, 5.0%, 5.1%, 4.7%, 4.6%, 4.5%, 3.8%, 3.2%, and 2.6%605

higher clustering accuracy than MKKM-IK when the miss-606

ing ratios vary from 0.1 to 0.9 on Caltech102-30. This also607

illustrates that the well utilization of the local structure of data608

assures performance improvement. Furthermore, by taking into609

account the correlation among base kernels, LI-MKKM-MR610

further improves the clustering performance over the baseline611

LI-MKKM.612

The aggregated ACC, NMI, and purity, and the stan- 613

dard deviation on Caltech 102 datasets are reported in 614

Table IV. Similarly, in comparison to the MKKM + ZF, 615

MKKM + MF, MKKM + KNN, MKKM + AF, and 616

MKKM-IK, our method still achieves much better cluster- 617

ing performance. For instance, the proposed LI-MKKM-MR 618

obtains 2.1%, 2.1%, 2.8%, 2.4%, 2.7%, and 2.4% higher clus- 619

tering accuracy than LI-MKKM. In addition, LI-MKKM- 620

MR achieves comparable clustering performance with the 621

newly proposed CG-IMVC [44] in terms of ACC and 622

purity on Caltech102. However, LI-MKKM-MR significantly 623

outperforms CG-IMVC in terms of NMI. The results on 624

Caltech102-5, Caltech102-10, and Caltech102-15 are provided 625

in the supplementary material due to space limitation, whose 626

results demonstrate the same conclusion as well. 627

Experiments on the UCI-Digital Dataset: In this simulation, 628

we apply all the testing methods on the UCI-Digital dataset, 629

which is widely utilized in MKC as a benchmark. For each 630

kind of missing ratio, we generate “incomplete patterns” ten 631

times and report their averaged results. 632

The ACC, NMI, and purity of all the testing meth- 633

ods over variational missing ratios are presented in Fig. 3. 634

It is clear that the latest proposed MKKM-IK pro- 635

vides unsatisfactory results on UCI-Digital, which is even 636

worse than MKKM+KNN. However, LI-MKKM significantly 637

outperforms the second-best one (MKKM + KNN) by 638

22.2%, 21.9%, 20.6%, 19.5%, 17.9%, 17.9%, 20.4%, 23.8%, 639

and 23.2% on accuracy. In addition, the proposed LI-MKKM- 640

MR further consistently improves the clustering performance 641

of LI-MKKM. The aggregated clustering results in Table V 642

also denote the same performance. 643

Experiments on the Protein Fold Prediction Dataset: In 644

this experiment, the protein fold dataset is applied to eval- 645

uate the testing methods, and we report all results in Fig. 4 646

and Table VI. Also, we can find that our LI-MKKM-MR also 647

achieves much better results than the rest algorithms on ACC, 648

NMI, and purity on the dataset. 649

Experiments on the Reuters Dataset: The clustering 650

performance in terms of ACC, NMI, and purity with the vari- 651

ation of missing ratios on Reuters is plotted in Fig. 5. As 652

seen, our proposed algorithm once again demonstrates signif- 653

icant superiority over the compared ones. We also report the 654

aggregated ACC, NMI, and purity in Table VII, which also 655

verify the effectiveness of the proposed LI-MKKM-MR. The 656
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2. Clustering ACC, NMI, and purity comparison with the variation of missing ratios on Caltech102-20, Caltech102-25, and Caltech102-30. (a) ACC
with missing ratios on Caltech102-20. (b) NMI with missing ratios on Caltech102-20. (c) Purity with missing ratios on Caltech102-20. (d) ACC with missing
ratios on Caltech102-25. (e) NMI with missing ratios on Caltech102-25. (f) Purity with missing ratios on Caltech102-25. g) ACC with missing ratios on
Caltech102-30. (h) NMI with missing ratios on Caltech102-30. (i) Purity with missing ratios on Caltech102-30.

TABLE IV
TOTAL ACC, NMI, AND PURITY COMPARISON (MEAN ± STD) OF VARIOUS CLUSTERING ALGORITHMS ON CALTECH102.

ON ACCOUNT OF OUT OF MEMORY, THE CLUSTERING RESULTS OF MVEC [43] ON CALTECH102-15,
CALTECH102-20, CALTECH102-25, AND CALTECH102-30 ARE NOT REPORTED

results of MVEC [43] and CG-IMVC [44] on Reuters are not657

reported due to out of memory.658

In short, we summarize that our algorithm has three659

advantages.660

1) Joint Optimization Based on Imputation and Clustering: 661

First, the process of imputation is guided by the clus- 662

tering results, which makes the imputation more direct 663

to the final goal. Second, refining the clustering results 664
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Fig. 3. Clustering ACC, NMI, and purity comparison with the variation of missing ratios on the UCI-digital dataset.

TABLE V
TOTAL ACC, NMI, AND PURITY COMPARISON (MEAN ± STD) OF VARIOUS CLUSTERING ALGORITHMS ON UCI-DIGITAL

Fig. 4. Clustering ACC, NMI, and purity comparison with the variation of missing ratios on the protein Fold Prediction dataset.

TABLE VI
TOTAL ACC, NMI, AND PURITY COMPARISON (MEAN ± STD) OF VARIOUS CLUSTERING ALGORITHMS ON THE PROTEIN FOLD DATASET

can benefits from this meaningful imputation. These two665

learning processes work well together, thus leading to666

the clustering performance improvement. In contrast,667

MKKM + MF, MKKM + KNNMKKM + ZF, and668

MKKM + AF algorithms do not fully make use of669

the connection between the imputation and clustering670

procedures. This may produce imputation, which does671

not well serve the subsequent clustering as originally672

expected, affecting the clustering performance.673

2) Considerably Utilizing Data’s Local Structure: Our local674

kernel alignment criterion is flexible and it makes675

the prespecified kernels aligned for better clustering676

performance.677

3) Well Considering the Correlation of Incomplete Base 678

Kernels: The incorporated matrix-induced regularization 679

reduces the high redundancy and enforces low diver- 680

sity among the selected kernels, making the prespecified 681

kernels be well utilized. 682

These factors have led to significant improvements in cluster 683

performance. 684

C. Reconstruction Error Comparison of LI-MKKM-MR 685

In this section, we evaluate the reconstruction errors of 686

the LI-MKKM-MR with the aforementioned algorithms on all 687

benchmark datasets. To do this, we calculate the reconstruction 688

error between the ground-truth kernels and the imputed ones 689
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Fig. 5. Clustering ACC, NMI, and purity comparison with the variation of missing ratios on Reuters.

TABLE VII
AGGREGATED ACC, NMI, AND PURITY COMPARISON (MEAN ± STD) OF VARIOUS CLUSTERING ALGORITHMS ON REUTERS

Fig. 6. Reconstruction error comparison of the compared algorithms with the variation of missing ratios on benchmark datasets.

via
∑m

p=1 ‖Kp(sp, sp)−K̂p(sp, sp)‖2, where Kp and K̂p denote690

the ground-truth and the imputed one, and sp denotes the miss-691

ing indices of the pth view. The results under various missing692

ratios are shown in Fig. 6. As observed, the kernels imputed by693

our algorithm align with the ground-truth kernels are compara-694

ble or slightly better when compared to those obtained by the695

existing imputation algorithms. Note that our ultimate goal in696

this work is clustering, while imputation is only a by-product.697

How to impute the missing views which not only achieves bet-698

ter clustering performance but also produces better imputation699

result is worth further exploring.700

D. Parameter Sensitivity of LI-MKKM-MR 701

In this part, we analyze that relationship between the cluster- 702

ing performance and matrix-induced regularization. Referring 703

to (10), LI-MKKM-MR induces the ratio of the nearest 704

neighbors τ and regularization parameter λ. In the follow- 705

ing, we conduct another experiment to show the variation of 706

performance among different τ and λ on the Flower17 dataset. 707

Fig. 7(a) and (b) shows the ACC and NMI of our algorithm 708

by varying τ in a huge range [0.02 : 0.02 : 0.2] with λ = 2−6. 709

From these figures, we can find that: 1) ACC fluctuates with 710

the monotonically increasing of τ and 2) the start points of the 711
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(a) (b) (c) (d)

Fig. 7. Sensitivity of the proposed LI-MKKM-MR with the variation of λ and τ . (a) ACC with variation of τ on Flower17. (b) NMI with variation of τ on
Flower17. (c) ACC with variation of λ on Flower17. (d) NMI with variation of λ on Flower17.

Fig. 8. Proposed algorithm convergence illustration.

ACC curves are typically higher than the end points, which712

induces that when the matrix-induced regularization term is713

dominated at ending points while the local kernel alignment714

maximization is dominated at starting points. These obser-715

vations verify the successful joint preservation of the local716

structure of data and the matrix-induced regularization term717

in our algorithm. Similarly, Fig. 7(c) and 7(d) presents the718

ACC and NMI of our algorithms by tuning λ from 2−9 to 2719

with τ = 0.1. In this scenario, our algorithm also shows stable720

performance over variational λ.721

As aforementioned, we conclude that compared to only722

preserving global kernel alignment, such as MKKM-IK723

in [36], our proposed algorithms are more essential to the724

clustering performance by preserving the local structure of725

data. Meanwhile, the clustering performance could be further726

improved by incorporating the correlation among base kernels.727

By appropriately integrating these two factors, it is possible728

to obtain the best clustering performance. Practically, there729

exists a tradeoff between the preservation of the local geo-730

metric structure and the correlation of base kernels to ensure731

the best clustering.732

E. Convergence of LI-MKKM-MR733

According to [46], the convergence of our proposed algo-734

rithm is guaranteed. We present one simulation trail of the735

proposed LI-MKKM-MR on the Flower 17 dataset as an exam-736

ple in 8. It is clearly shown that the objective value of the737

proposed algorithm is monotonically decreased and converges738

in a few iteration.739

V. CONCLUSION740

Though the newly proposed LI-MKKM is able to tackle741

the task of MKC with incomplete kernels, it takes the742

correlation among base kernels into account insufficiently. 743

We proposed to calculate the kernel alignment to address 744

this issue together with matrix-induced regularization in a 745

local manner. The proposed algorithm efficiently solves the 746

resultant optimization problem, and extensive experiments on 747

benchmarks have demonstrated that LI-MKKM-MR consis- 748

tently outperforms state-of-the-art baseline algorithms. In the 749

future, we will design efficient and effective algorithms to 750

solve the optimization problem directly without approximating 751

M in (9). 752
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Localized Incomplete Multiple Kernel k-Means
With Matrix-Induced Regularization

Miaomiao Li , Jingyuan Xia , Huiying Xu, Qing Liao , Member, IEEE, Xinzhong Zhu , Member, IEEE,
and Xinwang Liu , Senior Member, IEEE

Abstract—Localized incomplete multiple kernel k-means (LI-1

MKKM) is recently put forward to boost the clustering accuracy2

via optimally utilizing a quantity of prespecified incomplete base3

kernel matrices. Despite achieving significant achievement in a4

variety of applications, we find out that LI-MKKM does not5

sufficiently consider the diversity and the complementary of6

the base kernels. This could make the imputation of incom-7

plete kernels less effective, and vice versa degrades on the8

subsequent clustering. To tackle these problems, an improved LI-9

MKKM, called LI-MKKM with matrix-induced regularization10

(LI-MKKM-MR), is proposed by incorporating a matrix-induced11

regularization term to handle the correlation among base kernels.12

The incorporated regularization term is beneficial to decrease13

the probability of simultaneously selecting two similar kernels14

and increase the probability of selecting two kernels with mod-15

erate differences. After that, we establish a three-step iterative16

algorithm to solve the corresponding optimization objective and17

analyze its convergence. Moreover, we theoretically show that18

the local kernel alignment is a special case of its global one with19

normalizing each base kernel matrices. Based on the above obser-20

vation, the generalization error bound of the proposed algorithm21

is derived to theoretically justify its effectiveness. Finally, exten-22

sive experiments on several public datasets have been conducted23

to evaluate the clustering performance of the LI-MKKM-MR.24
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As indicated, the experimental results have demonstrated that 25

our algorithm consistently outperforms the state-of-the-art ones, 26

verifying the superior performance of the proposed algorithm. 27

Index Terms—Incomplete kernel learning, multiple kernel 28

clustering (MKC), multiple view learning. 29

I. INTRODUCTION 30

MULTIPLE kernel clustering (MKC) [1]–[8] sufficiently 31

integrates a number of precalculated base kernel matri- 32

ces to group samples into clusters, where similar samples 33

are in the same cluster while dissimilar ones are partitioned 34

into different ones. MKC has attracted much attention of 35

the data mining researchers and has been widely studied in 36

recent years [9]–[17]. The seminal work in [9] extends the 37

multiple kernel learning from supervised learning to unsuper- 38

vised learning and proposes a margin-based MKC algorithm. 39

It jointly optimizes the optimal kernel, the maximum mar- 40

gin hyperplane, and the optimal clustering labels. The widely 41

used kernel k-means method has been extended in [18] for 42

clustering analysis, where an optimal kernel is learned from 43

multiple data sources. Similarly, the work in [12] extends 44

the existing multiple kernel k-means (MKKM) algorithm by 45

designing a localized MKKM one in order to well utilize 46

the characteristics of each individual sample. To enhance the 47

robustness of the existing MKKM algorithms to noisy data, 48

Du et al. [13] proposed a robust MKKM algorithm by substi- 49

tuting the widely adopted squared error in the existing k-means 50

with an �2,1-norm one, and simultaneously optimized the best 51

combination of kernels. To increase the diversity and decrease 52

the redundancy of the selected base kernels, the recent work 53

in [14] extends the existing MKKM algorithms by designing a 54

matrix-induced regularization term to sufficiently explore the 55

correlation among the prespecified base kernels. More recently, 56

an optimal neighborhood kernel clustering (ONKC) algorithm 57

is proposed in [19], where the representability of the optimal 58

kernel to learn is largely boosted and the negotiation between 59

kernel learning and clustering is also reinforced. The afore- 60

mentioned MKC algorithms have been applied into many cases 61

and reached a superior performance [15], [20]–[23]. 62

As observed, these MKC algorithms share a common 63

assumption: all the prespecified base kernels are com- 64

plete. Nevertheless, in some real-world applications, such as 65

image fusion [24], image retrieval [25], and document/video 66

analysis [26], some views of a sample are usually not 67

collected due to various reasons [27], [28]. To address 68

2168-2267 c© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
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this issue, the work in the literature proposes to first69

impute the missing elements in base kernel matrices with70

imputation methods and then performs the existing MKC71

on these imputed kernels. Several commonly used filling72

methods include zero-filling, mean value filling, k-nearest-73

neighbor filling (KNN), expectation-maximization (EM) fill-74

ing [29], as well as several recently proposed to matrix75

imputation [30]–[33].76

One disadvantage existing in the aforementioned “two-77

stage” algorithms is that the imputation is separated from the78

subsequent clustering. As a result, this may not be conducive79

to mutual negotiation between the imputation and clustering to80

reach the best performance. To overcome the above issue, the81

more recent literature [34]–[36] advocates to unify the learn-82

ing procedure of imputation and clustering into a common83

framework, with the aim to learn an optimal imputation that84

best severe for the clustering tasks.85

Although demonstrating superior clustering results in sev-86

eral practical applications, we find that these works do not87

sufficiently consider the redundancy and diversity among88

prespecified kernel matrices when performing incomplete89

MKC. This could lead to high redundancy and low diver-90

sity among the selected kernels [14], making the utilization91

ratio of these base kernel matrices insufficient and con-92

versely decreasing the accuracy of clustering tasks. In our93

work, a localized incomplete MKKM with matrix-induced94

regularization (LI-MKKM-MR) is proposed to address the95

above-mentioned issue. By incorporating matrix-induced reg-96

ularization, LI-MKKM-MR is able to avoid selecting two97

similar kernel matrices simultaneously and increase the prob-98

ability of selecting two kernel matrices with large diversity,99

making the base kernels better utilized for clustering. In addi-100

tion, it inherits the advantage of localized incomplete multiple101

kernel k-means (LI-MKKM) which only requires that the102

similarity of each sample to its top k-nearest neighbors be103

optimally aligned with the corresponding patch of the entire104

ideal similarity. This is helpful for LI-MKKM-MR to pay105

more attention on closer pairwise sample similarities that shall106

be put together, and prevents involving unreliable similarity107

evaluation for farther sample pairs. Furthermore, a three-step108

iterative optimization algorithm is designed to solve the corre-109

sponding optimization objective and its convergence has also110

been analyzed. After that, the generalization error bound of the111

clustering algorithm is derived, which theoretically guarantees112

its effectiveness. Comprehensive experiments on several pub-113

lic datasets have been conducted to evaluate the clustering114

performance of the proposed LI-MKKM-MR. As demon-115

strated, LI-MKKM-MR significantly and consistently outper-116

forms the existing two-step-based algorithms and the newly117

proposed algorithm [36]. Extensive experimental results have118

demonstrated the superiority of involving the matrix-induced119

regularization.120

To summarize, this work makes the following major121

contributions.122

1) This is the first attempt to identify the kernel redun-123

dancy problem in incomplete MKC. We then introduce124

a new algorithm to improve LI-MKKM by integrating125

matrix-induced regularization to select low-redundant126

and high-diverse kernel matrices and carefully establish 127

three-step iterative algorithm to solve the corresponding 128

optimization objective. 129

2) We build the theoretical connection between global and 130

local kernel alignment criteria, then we further derive the 131

generalization error bound of the proposed LI-MKKM- 132

MR, which theoretically justifies its effectiveness. 133

3) Comprehensive experiments on ten public datasets have 134

demonstrated that our LI-MKKM-MR achieves the 135

state-of-the-art performance compared with the exist- 136

ing advanced algorithms. This considerably verifies our 137

identification of the aforementioned issue and the effec- 138

tiveness of our solution. 139

Finally, we clarify the differences between LI-MKKM-MR 140

and several recently proposed related work [14], [35]. The 141

differences between LI-MKKM [35] and LI-MKKM-MR can 142

be summarized from the following three aspects. 143

1) LI-MKKM [35] does not sufficiently consider the diver- 144

sity and the complementarity of these incomplete base 145

kernels. This could make the imputation of incomplete 146

kernels less effective, and incur the adverse effect on 147

the subsequent clustering. Differently, LI-MKKM-MR 148

is proposed by incorporating matrix-induced regulariza- 149

tion, which is helpful to reduce the probability of simul- 150

taneously selecting two similar kernels and increase the 151

probability of selecting two kernels with moderate dif- 152

ferences, making the base kernels better utilized for 153

clustering. 154

2) Compared to LI-MKKM [35], LI-MKKM-MR pro- 155

vides the generalization error analysis, which measures 156

the clustering performance of the learned clusters in 157

the training procedure on unseen samples. This the- 158

oretically justifies the effectiveness of the proposed 159

LI-MKKM-MR. 160

3) As observed from the experimental results in Section IV, 161

LI-MKKM-MR significantly improves the clustering 162

performance of LI-MKKM [35] in various benchmark 163

datasets, which well validates our identification of the 164

aforementioned issue in LI-MKKM and the effectiveness 165

of our solution. 166

We then summarize the differences between [14] and our 167

work from the following aspects. In [14], matrix-induced 168

regularization is proposed to solve the kernel redundancy 169

in MKC. However, it cannot effectively solve MKC with 170

incomplete kernels. Differently, the proposed LI-MKKM-MR 171

makes the first attempt to identify the kernel redundancy 172

problem in incomplete MKC, proposes an effective solu- 173

tion, and conducts comprehensive experiments to validate 174

our identification of this issue and the superiority of our 175

algorithm. 176

II. RELATED WORK 177

In this part, we mainly introduce the methods of MKKM 178

clustering, MKKM with incomplete kernels (MKKM-IK), and 179

its localized variant. Before introducing these algorithms, we 180

present all notations which will be used in the following in 181

Table I. 182
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TABLE I
NOTATIONS SUMMARY

A. Multiple Kernel k-Means183

Let {xi}n
i=1 ⊆ X be n training samples, and φp(·) : x ∈ X �→184

Hp, x are mapped onto a reproducing kernel Hilbert space185

Hp (1 ≤ p ≤ m) by the pth feature. Each sample in MKC186

is represented by φγ (x) = [γ1φ
�
1 (x), . . . , γmφ�

m (x)]�, where187

γ = [γ1, . . . , γm]� represents the weights of m prespecified188

base kernel functions {κp(·, ·)}m
p=1. These kernel weights will189

be adaptively adjusted during MKC. Under the aforementioned190

definition of φγ (x), the corresponding kernel function can be191

expressed as follows:192

κγ

(
xi, xj

) = φ�
γ (xi)φγ (xj) =

m∑

p=1

γ 2
p κp

(
xi, xj

)
. (1)193

One can calculate a kernel matrix Kγ on training samples194

{xi}n
i=1 with the kernel function defined in (1). As a result, the195

objective of MKKM with Kγ is formulated as196

min
H,γ

Tr
(

Kγ

(
In − HH�))

197

s.t. H�H = Ik, γ �1m = 1, γp ≥ 0 ∀p (2)198

where H ∈ R
n×k is a soft version of the cluster assignment199

matrix, and Ik is a k × k identity matrix. Alternately updating200

H and γ can optimize (2).201

Optimizing H With Fixed γ : With γ fixed, the optimization202

in (2) toward H is exactly the traditional kernel k-means203

presented in204

max
H

Tr
(

H�Kγ H
)

s.t. H ∈ R
n×k, H�H = Ik. (3)205

The optimal H in (3) consists of k eigenvectors correspond-206

ing to the top-k eigenvalues of Kγ [37].207

Optimizing γ With Fixed H: With H fixed, the equivalent208

form of optimization in (2) with regard to γ is as follows:209

min
γ

m∑

p=1

γ 2
p Tr

(
Kp

(
In − HH�)) s.t. γ �1m = 1, γp ≥ 0 (4)210

which has a closed-form solution.211

B. MKKM With Incomplete Kernels 212

MKKM has recently been extended to handle incomplete 213

MKC in [34] and [36]. Previous algorithms first manage to 214

impute the incomplete kernel matrices and then apply the 215

existing MKKM on the imputed kernel matrices. In con- 216

trast, they propose to unify the learning process of imputation 217

and clustering into a common learning framework and estab- 218

lish an effective optimization algorithm to optimize each of 219

them alternately. In MKKM-IK, the clustering procedure pro- 220

vides a guidance for the imputation of the incomplete base 221

kernel matrices, and the clustering is further enhanced by the 222

imputed kernels. Both procedures are alternated performed 223

until achieving optimal results. The above idea can be achieved 224

as follows: 225

min
H, γ , {Kp}m

p=1

Tr
(

Kγ (In − HH�)
)

226

s.t. H ∈ R
n×k, H�H = Ik 227

γ �1m = 1, γp ≥ 0 228

Kp(ep, ep) = K(dd)
p , Kp � 0 ∀p (5) 229

where ep (1 ≤ p ≤ m) denotes the sample indices, the p-th 230

view is observed, and K(dd)
p denotes the kernel submatrix. Note 231

that we impose the constraint Kp(ep, ep) = K(dd)
p to make 232

the known entries of Kp kept unchanged during the learning 233

course. The imputation of incomplete kernels can be regarded 234

as a by-product of learning, because the ultimate goal of (5) 235

is clustering. 236

A trilevel optimization strategy developed in [34] develops 237

to solve (5) alternately. 238

Optimizing H With γ and {Kp}m
p=1 Fixed: Given γ and 239

{Kp}m
p=1, the optimization in (5) with respect to H is equivalent 240

to a kernel k-means problem solved by (3). 241

Optimizing {Kp}m
p=1 With γ and H Fixed: Given γ and H, 242

(5) toward each Kp is equivalently reformulated as follows: 243

min
Kp

Tr
(

Kp(In − HH�)
)

244

s.t. Kp
(
ep, ep

) = K(dd)
p , Kp � 0. (6) 245

It is proven in [34] that the optimal Kp in (6) has the closed- 246

form solution as in (7), shown at the bottom of the page, where 247

Z = In − HH� and taking the elements of Z corresponding 248

to the observed and unobserved sample indices can construct 249

Z(dm). For more details, refer to [34]. 250

Optimizing γ With H and {Kp}m
p=1 Fixed: Given H and 251

{Kp}m
p=1, (5) with respect to γ reduces to a quadratic pro- 252

gramming (QP) with linear constraints. 253

C. Localized Incomplete MKKM 254

Although it is ingenious to unify clustering and imputation 255

into one learning process, which is achieved by globally max- 256

imizing the alignment between the optimal kernel matrix Kγ 257

Kp =
[

K(dd)
p −K(dd)

p Z(dm)(Z(mm))−1

−(Z(mm))−1Z(dm)�K(dd)
p (Z(mm))−1Z(dm)�K(dd)

p Z(dm)(Z(mm))−1

]

(7)
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and the ideal matrix HH�, as presented in (2). This crite-258

rion does not take full advantage of the local distribution of259

data, and requires that all paired samples, whether closer or260

farther, should be consistent with the ideal similarity without261

distinction.262

Instead of calculating the alignment between the optimal263

kernel and the idea matrix in a global manner as in (5),264

localized incomplete MKKM (LI-MKKM) [35] is proposed265

to utilize the local structure among data by only requiring266

the similarity of each sample to align with its nearest neigh-267

bors. Specifically, the objective function of LI-MKKM is as268

follows:269

min
γ , {Kp}m

p=1,H

n∑

i=1

Tr
(

Kγ

(
A(i) − A(i)HH�A(i)

))
270

s.t. H ∈ R
n×k, H�H = Ik, γ �1m = 1, γp ≥ 0271

Kp
(
ep, ep

) = K(dd)
p , Kp � 0 ∀p (8)272

where A(i) = U(i)U(i)� with U(i) ∈ {0, 1}n×round(n∗τ) (1 ≤ i ≤273

n) denoting the neighborhood index matrix of the ith sample.274

U(i)
jv = 1 represents that xj is the vth nearest neighbor of xi,275

where 1 ≤ v ≤ round(n ∗ τ) and τ is the ratio of the nearest276

neighbors.277

Similar to [34], the work in [35] develops a tristep278

optimization algorithm to solve (8) and theoretically proves279

its convergence. Refer to [35] for more details.280

III. LOCALIZED INCOMPLETE MULTIPLE KERNEL281

k-MEANS WITH MATRIX-INDUCED REGULARIZATION282

A. Formulation283

Although aligning the optimal kernel with the ideal similar-284

ity locally can improve the clustering performance, LI-MKKM285

dose not explicitly take the correlation among base kernels286

into account. This would prevent these incomplete base ker-287

nels from being well utilized. To overcome this problem, we288

propose an improved algorithm based on LI-MKKM via intro-289

ducing matrix-induced regularization γ �Mγ to decrease the290

redundancy and enhance the diversity of the selected base ker-291

nels, where Mpq measures the correlation between Kp and292

Kq. By integrating this regularization into (8), the following293

objective is obtained:294

min
γ , {Kp}m

p=1,H

n∑

i=1

Tr
(

Kγ (A(i) − A(i)HH�A(i))
)

+ λ

2
γ �Mγ295

s.t. H ∈ R
n×k, H�H = Ik296

γ �1m = 1, γp ≥ 0297

Kp(ep, ep) = K(dd)
p , Kp � 0 ∀p (9)298

where λ is a hyper-parameter to balance the regularization on299

kernel weights and the loss of local kernel k-means.300

In this work, we adopt Mpq = Tr(KpKq) to measure the cor-301

relation between Kp and Kq. On one hand, the incorporation of302

γ �Mγ is helpful for well utilizing the base kernels, which is303

utilized to boost the clustering performance. On the other hand,304

it makes the resultant optimization more challenging since the305

optimization on each Kp is a quadratic semi-defined program-306

ming, whose computational cost is intensive and this prevents307

it from being applied to practical applications. To reduce the 308

computation overhead of (9), we propose to approximate Mpq 309

by M̃pq = Tr(K(0)
p K(0)

q ) and keep it unchanged during the 310

learning course, where K(0)
p is an initial imputation of Kp. By 311

substituting M with M̃, the objective function of the proposed 312

LI-MKKM-MR can be expressed as follows: 313

min
γ , {Kp}m

p=1,H

n∑

i=1

Tr
(

Kγ

(
A(i) − A(i)HH�A(i)

))
+ λ

2
γ �M̃γ 314

s.t. H ∈ R
n×k, H�H = Ik 315

γ �1m = 1, γp ≥ 0 316

Kp(ep, ep) = K(dd)
p , Kp � 0 ∀p. (10) 317

It is reasonable to measure the correlation of pairwise ker- 318

nels via observed similarity. Consequently, the approximation 319

M̃ can be regarded as a prior of M. Also, although this 320

approximation is simple, its advantages are three-folds. First, 321

it fulfills our requirement on the kernel coefficients to enhance 322

the diversity and decrease the redundancy. Second, it simplifies 323

the optimization on {Kp}m
p=1, making it admit a closed-form 324

solution. This significantly increases the computational cost. 325

Third, the effectiveness of the proposed approximation can be 326

demonstrated by experiments. 327

Although the matrix-induced regularization may be 328

exploited in other related aspects, such as MKC [14], this 329

is the first work in literature to study the regularization on 330

incomplete MKC and design a reasonable approximation for 331

the convenience of computation. Moreover, this would trigger 332

more research on incomplete MKC, such as designing more 333

informative M, updating M with learned kernel weights and 334

the imputation at each iteration, to name just a few. More 335

importantly, our experimental study shows that the incorpo- 336

ration of matrix-induced regularization helps to utilize the 337

incomplete kernels, leading to significantly improvement on 338

clustering performance. This makes the proposed algorithm a 339

good choice in real-world applications, such as cancer biol- 340

ogy [12], analysis of multiple heterogeneous neuroimaging 341

data [38], and Alzheimer’s disease diagnosis [39]. In the fol- 342

lowing, we develop a tristep optimization strategy to solve it 343

alternately in the following parts. 344

B. Alternate Optimization of LI-MKKM-MR 345

Optimizing H With γ and {Kp}m
p=1 Fixed: Given γ 346

and {Kp}m
p=1, the optimization objective w.r.t H in (10) 347

redefines to 348

max
H

Tr

(

H�
n∑

i=1

(
A(i)Kγ A(i)

)
H

)

349

s.t. H ∈ R
n×k, H�H = Ik (11) 350

which is transformed into a classical kernel k-means-based 351

optimization objective and can be conveniently tackled by the 352

existing public toolkit. 353

Optimizing {Kp}m
p=1 With γ and H Fixed: Given γ and 354

H, the optimization objective w.r.t {Kp}m
p=1 in (10) can be 355
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formulated as356

min
{Kp}m

p=1

m∑

p=1

γ 2
p Tr

(

Kp

n∑

i=1

Tr
(

A(i) − A(i)HH�A(i)
))

357

s.t. Kp(ep, ep) = K(dd)
p , Kp � 0 ∀p. (12)358

It is difficult to solve the optimization problem in (12) since359

there are multiple kernel matrices to be optimized simultane-360

ously. By cautiously analyzing the optimization, we observe361

that: 1) each kernel matrix Kp has its own separate constraint362

and 2) the objective in (12) is a sum generated by calculating363

Kp. As a result, (12) can be reformulated as m uncorrelated364

subobjectives equivalently, as shown in the following:365

min
Kp

Tr(KpQ)366

s.t. Kp(ep, ep) = K(dd)
p , Kp � 0 (13)367

where Q = ∑n
i=1(A

(i) − A(i)HH�A(i)).368

It seems that directly solving (13) is difficult because369

of the equality and PSD constraints imposed on Kp. By370

following [35], we parameterize each Kp as:371

Kp =
[

K(dd)
p K(dd)

p Zp

Z�
p K(dd)

p Z�
p K(dd)

p Zp

]

(14)372

where Zp ∈ R
d×m. d and m refer to the number of observed373

samples and unobserved ones, respectively. With (14), we374

assume that the observed ones represent the missing kernel375

entries. It is shown in [35] that Kp in (14) automatically376

satisfies both constraints after this parametrization.377

Based on the parametrization in (14), the constrained378

optimization in (13) is equivalent to379

min
Zp

Tr

([
K(dd)

p K(dd)
p Zp

Z�
p K(dd)

p Z�
p K(dd)

p Zp

][
Q(dd) Q(dm)

Q(dm)� Q(mm)

])

(15)380

where Q is decomposed into the following submatrices381 [
Q(dd) Q(dm)

Q(dm)� Q(mm)

]

.382

To minimize (15), we take its derivative with respect to Zp383

and let it vanish, leading to384

Zp = −Q(dm)
(

Q(mm)
)−1

. (16)385

As a result, we obtain an analytical solution for the optimal386

Kp by substituting Zp in (16) into (14). As seen, (13) provides387

a guidance for the imputation of each base kernel by explor-388

ing the data structure in a local manner. Specifically, it locally389

estimates the alignment between the similarity of each sam-390

ple and its τ -nearest neighbors with the corresponding ideal391

matrix. This enables the proposed algorithm to better utilize392

the intracluster variations among samples. Therefore, the clus-393

tering performance could be improved, mainly attributing to394

an effective incomplete kernels imputation measure.395

Optimizing γ With {Kp}m
p=1 and H Fixed: Given {Kp}m

p=1396

and H, it is easy to present that (10) w.r.t. γ is as follows:397

min
γ

1

2
γ �(2W + λM̃

)
γ398

s.t. γ �1m = 1, γp ≥ 0 (17)399

Algorithm 1 Proposed LI-MKKM-MR

1: Input: {Kdd)
p }m

p=1, {ep}m
p=1, k, τ, λ and ε0.

2: Output: H, γ and {Kp}m
p=1.

3: Initialize γ (0) = 1m/m, {K(0)
p }m

p=1 and t = 1.
4: Generate U(i) for i-th samples (1 ≤ i ≤ n) by Kγ (0) .

5: Calculate A(i) = U(i)U(i)� for i-th samples (1 ≤ i ≤ n).
6: repeat

7: Kγ (t) = ∑m
p=1

(
γ

(t−1)
p

)2
K(t−1)

p .
8: Update H(t) by solving Eq. (11) with Kγ (t) .

9: Update {K(t)
p }m

p=1 with H(t) by Eq. (13).

10: Update γ (t) by solving Eq. (17) with H(t) and {K(t)
p }m

p=1.
11: t = t + 1.
12: until

(
obj(t−1) − obj(t)

)
/obj(t) ≤ ε0

where W = diag([Tr(K1Q), . . . , Tr(KmQ)]). Theorem 1 in 400

the following indicates that W is PSD. 401

Theorem 1: The Hessian matrix 2W + λM̃ in (17) is a 402

symmetric PSD matrix. 403

Proof: By defining H = [h1, . . . , hk], we can find out that 404

HH�hc = hc( 1 ≤ c ≤ k) since H�H = Ik. This indicates 405

that HH� has k eigenvalue with 1. Besides, its rank does 406

not exceed k. This means that its has n − k eigenvalue with 407

0. In − HH� contains n − k eigenvalue with 1 and k eigen- 408

value with 0. Consequently, A(i)(In−HH�)A(i) is PSD, which 409

ensures that Q = ∑n
i=1(A

(i) − A(i)HH�A(i)) is PSD. As a 410

result, we have wp = Tr(KpQ) ≥ 0 ∀p, guaranteeing the posi- 411

tiveness of W. Meanwhile, W is also a symmetric PSD matrix 412

according to [40]. Consequently, 2W+λM̃ is a symmetric PSD 413

matrix. 414

On the basis of Theorem 1, we can guarantee that the 415

optimization in (17) w.r.t γ is a traditional QP with linear 416

constraints. Therefore, it can be conveniently handled by the 417

existing optimization packages. 418

Algorithm 1 presents an outline of solving (10) by the 419

proposed algorithm, where we adopt the zero-filling method 420

to initially impute the missing elements of {K(0)
p }m

p=1 and uti- 421

lize obj(t) to represent the objective value at the t-th iteration. 422

Besides, the neighbors of each sample remain unvaried during 423

the optimization procedure in LI-MKKM-MR. In specific, we 424

calculate the τ -nearest neighbors of each sample by Kγ (0) . 425

In this way, the optimization target of LI-MKKM-MR is 426

guaranteed to be reduced in a monotonic manner when we 427

update one variable and keep the others unchanged itera- 428

tively. Simultaneously, the objective is lower bounded by zero. 429

Hence, it is guaranteed that LI-MKKM-MR converges into a 430

local optimal solution. Experimental results have demonstrated 431

that our method usually converges quickly. 432

The end of this part analyzes the computational complexity 433

of our method. In specific, the computational complexity of LI- 434

MKKM-MR is O(n3 +∑m
p=1 n3

p +m3) at each iteration, where 435

np (np ≤ n) and m refer to the number of observed samples of 436

Kp and base kernels. The complexity of LI-MKKM-MR can 437

be compared to that of MKKM-IK [34] and LI-MKKM [35]. 438

Moreover, each sample of Kp is independent so that they can 439
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be measured in a parallel manner. By this means, our LI-440

MKKM-MR can scale well regardless of the variation of the441

base kernels number.442

C. Theoretical Results443

The generalization error of the k-means clustering algorithm444

has been widely discussed in the existing literature [36], [41],445

and [42]. We first establish the theoretical connection between446

the existing MKKM-IK [36] with LI-MKKM-MR, and fur-447

ther derive the generalization error bound of LI-MKKM-MR448

based on the theoretical results in [36]. The following theorem449

(Theorem 2) points out that the local kernel alignment adopted450

in our LI-MKKM-MR can be achieved by normalizing each451

base kernel matrix.452

Theorem 2: The local kernel alignment criterion in (8) is453

equivalent to the widely adopted global kernel alignment by454

normalizing each base kernel matrix.455

Proof: The objective function in (8) can be written as456

n∑

i=1

Tr
(

Kγ

(
A(i) − A(i)HH�A(i)

))
457

=
n∑

i=1

〈
A(i) ⊗ Kγ , A(i) ⊗

(
I − HH�)〉

F
458

=
n∑

i=1

〈
A(i) ⊗ Kγ , I − HH�〉

F
459

=
〈(

n∑

i=1

A(i)

)

⊗ Kγ , I − HH�
〉

F

460

=
m∑

p=1

γ 2
p

〈(
n∑

i=1

A(i)

)

⊗ Kp, I − HH�
〉

F

461

=
m∑

p=1

γ 2
p

〈
K̃p, I − HH�〉

F
462

= Tr
(

K̃γ

(
I − HH�)) (18)463

where ⊗ denotes elementwise multiplication between two464

matrices, K̃p = (
∑n

i=1 A(i)) ⊗ Kp can be treated as a nor-465

malized Kp, and K̃γ = ∑m
p=1 γ 2

p K̃p. Consequently, by such466

normalization being applied on each base kernel, we can467

clearly see that the local kernel alignment criterion in (8) is468

exactly the global kernel alignment in [36]. This completes469

the proof.470

Let t(x(p)) = 1 if the pth view of x is available; oth-471

erwise, x(p) should be optimized. It is worth pointing out472

that t(x(p)) is a random variable that depends on x. Let473

Ĉ = [Ĉ1, . . . , Ĉk] be the k centroids and γ̂ be the kernel474

weights learned by LI-MKKM-MR. k-means clustering should475

make the reconstruction error small476

E

[
min

y∈{e1,...,ek}

∥∥∥φγ̂ (x) − Ĉy
∥∥∥

2

H

]
(19)477

where φγ̂ (x) = [γ̂1t(x(1))φ�
1 (x(1)), . . . , γ̂mt(x(m))φ�

m (x(m))]�,478

e1, . . . , ek form the orthogonal bases of Rk.479

We first define a function class480

F =
{

f : x �→ min
y∈{e1,...,ek}

∥∥φγ (x) − Cy
∥∥2
H
∣∣
∣γ �1m = 1, γp ≥ 0,481

C ∈ Hk, t(x(p)
i )t(x(p)

j )κ̃�
p (x(p)

i , x(p)
j ) ≤ b, ∀p ∀xi ∈ X

}
482

(20)483

where Hk represents the multiple kernel Hilbert space and 484

κ̃(·, ·) is a kernel function corresponding to K̃p. 485

Based on Theorem 2, we derive the generalization error 486

bound of the proposed LI-MKKM-MR by following [36]. 487

Theorem 3: For any δ > 0, with probability at least 1 − δ, 488

the following holds for all f ∈ F : 489

E
[
f (x)

] ≤ 1

n

n∑

i=1

f (xi) + 4
√

πmbG1n(γ , t)

n
+ 4

√
πmbG2n(γ , t)

n
490

+
√

8πbk2

√
n

+ 2b

√
log 1/δ

2n
(21) 491

where 492

G1n(γ , t) � Eγ

⎡

⎣sup
γ ,t

n∑

i=1

m∑

p,q=1

γipqt(x(p)
i )t(x(q)

i )γpγq

⎤

⎦ (22) 493

G2n(γ , t) = Eγ

⎡

⎣sup
γ ,t

n∑

i=1

k∑

c=1

m∑

p=1

γicpγpt
(

x(p)
i

)
⎤

⎦ (23) 494

and γipq, γicp, i ∈ {1, . . . , n}, p, q ∈ {1, . . . , m}, c ∈ {1, . . . , k} 495

are i.i.d. Gaussian random variables with zero mean and unit 496

standard deviation. 497

According to the analyses in [36], our local kernel alignment 498

criterion in (8), with normalized base kernel matrices, is an 499

upper bound of 1/n
∑n

i=1 f (xi). As a result, by minimizing 500

Tr(K̃γ (In − HH�)), one can obtain a small 1/n
∑n

i=1 f (xi) 501

for good generalization. This justifies the good generalization 502

ability of the LI-MKKM-MR. The detailed proof has been 503

presented in the supplementary material. 504

IV. EXPERIMENTS 505

A. Experimental Settings 506

In our experiments, we adopt ten widely used MKL bench- 507

mark datasets to verify the proposed algorithms, including 508

Oxford Flower17 and Flower102,1 Caltech102,2 Digital,3 509

Protein Fold Prediction,4 and Reuters.5 The information of 510

them is shown in Table II. The kernel matrices of these datasets 511

are precomputed and can be directly obtained from the afore- 512

mentioned link. Caltech102-5 refers to the number of samples 513

belonging to each cluster is 5, and the same for the rest 514

datasets. The publicly access codes for kernel k-means and 515

MKKM can be found in the website.6 516

Several well-known and widely used imputation methods, 517

such as zero filling (ZF), mean filling (MF), KNN, and 518

alignment-maximization filling (AF) are contained in [30]. 519

After that, researchers take the imputed kernel matrices as 520

the input of classical MKKM. The kind of two-stage methods 521

are called MKKM + ZF, MKKM + MF, MKKM + KNN, 522

1http://www.robots.ox.ac.uk/˜+vgg/data/flowers/
2http://files.is.tue.mpg.de/pgehler/projects/iccv09/
3http://ss.sysu.edu.cn/˜+py/
4http://mkl.ucsd.edu/dataset/protein-fold-prediction/
5http://kdd.ics.uci.edu/databases/reuters21578/
6https://github.com/mehmetgonen/lmkkmeans/



IE
EE P

ro
of

LI et al.: LI-MKKM 7

(a) (b) (c)

(d) (e) (f)

Fig. 1. Clustering ACC, NMI, and purity comparison with the variation of missing ratios on Flower17 and Flower102 datasets. (a) ACC with missing ratios
on Flower17. (b) NMI with missing ratios on Flower17. (c) Purity with missing ratios on Flower17. (d) ACC with missing ratios on Flower102. (e) NMI
with missing ratios on Flower102. (f) Purity with missing ratios on Flower102.

TABLE II
DATASETS SUMMARY

and MKKM + AF, respectively. Also, the newly proposed523

MKKM-IK [34], LI-MKKM [35], MVEC [43], and CG-524

IMVC [44] are also incorporated as strong baselines. The525

algorithms in [31], [32], and [45] are not incorporated into526

our experimental comparison since that these algorithms only527

consider the missing of input features, rather than the rows or528

columns of base kernel matrices in our case.529

In the experiment, ε is used to denote the percentage of530

incomplete samples. Intuitively, the clustering performance531

will become less accurate when the value of ε is increas-532

ing. In our simulation, we set ε as [0.1 : 0.1 : 0.9] on533

all the ten datasets. The performance metrics in this sim-534

ulation include the clustering accuracy (ACC), normalized535

mutual information (NMI), and purity. For each method, we536

present the best result among 50 trials, where each trial started537

from a random initialization state. As a result, the effect538

of randomness caused by k-means could be alleviated. We539

generate “incomplete” patterns randomly for ten times and 540

report the statistical results. For all datasets, the quantity 541

of clusters is given and set as the ground truth of classes. 542

The generation of the missing vectors {sp}m
p=1 follows the 543

approach in [34]: 1) randomly select round(ε ∗ n) samples 544

with the rounding function round(·); 2) generate a random 545

vector v = (v1, . . . , vk, . . . , vm), vk ∈ [0, 1] and a scalar 546

v0, v0 ∈ [0, 1] for each selected sample; 3) if vp ≥ v0, it 547

presents the pth view for this sample; and 4) if there is no 548

vp ≥ v0, generate a new v. Note that there is no requirement 549

on complete view for each sample. In this instance, the index 550

vector sp is obtained to list the samples with the presentation 551

on the pth view. 552

B. Experimental Results 553

Experiments on Flower17 and Flower102: Three 554

performance metrics, including: 1) the ACC; 2) NMI; 555

and 3) purity, of the testing algorithms with the variation 556

of missing ratios in [0.1, . . . , 0.9] on the Flower17 and 557

Flower102 datasets have been demonstrated in Fig. 1. We 558

have the following observations. 559

1) The newly proposed MKKM-IK [36] (in green) 560

has shown promising performance improvements 561

on the ACC, NMI, and purity compared to the 562

previous two-stage imputation methods. For exam- 563

ple, the MKKM + AF outperforms MKKM-IK by 564

0.1%, 0.6%, 2.5%, 2.8%, 4.1%, 4.7%, 6.0%, 8.5%, and 565

8.2% in terms of clustering accuracy on Flower17, 566

which clearly demonstrates the benefit of the joint 567

optimization on imputation and clustering. 568
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TABLE III
AGGREGATED ACC, NMI, AND PURITY COMPARISON (MEAN ± STD) OF DIFFERENT KINDS OF

CLUSTERING ALGORITHMS ON FLOWER17 AND FLOWER102 DATASETS

2) Also, LI-MKKM outperforms MKKM-IK by 8.4%,569

4.4%, 5.8%, 3.1%, 2.6%, 2.6%, 1.2%, 0.2%, and 2.2%570

on Flower17. This result clearly verifies that the utiliz-571

ing data’s local structure further boosts the clustering572

performance.573

3) Furthermore, our proposed LI-MKKM-MR (in red)574

significantly outperforms the LI-MKKM in all575

cases from Fig. 1(a)–(f) in the aspect of clus-576

tering performance. For example, LI-MKKM-MR577

further outperforms LI-MKKM by 8.5%, 11.2%,578

9.7%, 10.1%, 9.4%, 9.2%, 8.2%, 7.7%, and 3.6%. This579

result indicates the effectiveness of incorporating the580

matrix-induced regularization.581

4) In addition, our newly proposed method demonstrates582

stronger advantage when compared to previous ones,583

especially under low missing ratios. It is notable that584

in Fig. 1(a), when the missing ratio is extremely low585

(ε = 0.1), LI-MKKM-MR improves the second-best586

algorithm (LI-MKKM) by 8.5% in terms of clustering587

accuracy on Flower17.588

In Table III, the aggregated ACC, NMI, purity, and the589

standard deviation are reported, where we show the highest590

performance one in bold. Similarly, the results also illus-591

trate that MKKM + ZF, MKKM + MF, MKKM + KNN,592

MKKM + AF, and MKKM-IK are outperformed by the593

proposed algorithm. Specifically, the second-best one (LI-594

MKKM) is exceeded by the proposed LI-MKKM-MR by 7%.595

Experiments on the Caltech102 Dataset: Fig. 2 presents596

ACC, NMI, and purity of all the testing algorithms over vari-597

ational missing ratios on the Caltech102 datasets. We find598

out that the recently proposed MKKM-IK [36] (in green)599

achieves a comparable clustering performance with a represen-600

tative two-stage imputation method MKKM + AF, while the601

proposed LI-MKKM outperforms MKKM-IK with significant602

improvements on all the performance criterions, details can603

be found in Fig. 2(a)–(i). More precisely, LI-MKKM obtains604

6.4%, 5.0%, 5.1%, 4.7%, 4.6%, 4.5%, 3.8%, 3.2%, and 2.6%605

higher clustering accuracy than MKKM-IK when the miss-606

ing ratios vary from 0.1 to 0.9 on Caltech102-30. This also607

illustrates that the well utilization of the local structure of data608

assures performance improvement. Furthermore, by taking into609

account the correlation among base kernels, LI-MKKM-MR610

further improves the clustering performance over the baseline611

LI-MKKM.612

The aggregated ACC, NMI, and purity, and the stan- 613

dard deviation on Caltech 102 datasets are reported in 614

Table IV. Similarly, in comparison to the MKKM + ZF, 615

MKKM + MF, MKKM + KNN, MKKM + AF, and 616

MKKM-IK, our method still achieves much better cluster- 617

ing performance. For instance, the proposed LI-MKKM-MR 618

obtains 2.1%, 2.1%, 2.8%, 2.4%, 2.7%, and 2.4% higher clus- 619

tering accuracy than LI-MKKM. In addition, LI-MKKM- 620

MR achieves comparable clustering performance with the 621

newly proposed CG-IMVC [44] in terms of ACC and 622

purity on Caltech102. However, LI-MKKM-MR significantly 623

outperforms CG-IMVC in terms of NMI. The results on 624

Caltech102-5, Caltech102-10, and Caltech102-15 are provided 625

in the supplementary material due to space limitation, whose 626

results demonstrate the same conclusion as well. 627

Experiments on the UCI-Digital Dataset: In this simulation, 628

we apply all the testing methods on the UCI-Digital dataset, 629

which is widely utilized in MKC as a benchmark. For each 630

kind of missing ratio, we generate “incomplete patterns” ten 631

times and report their averaged results. 632

The ACC, NMI, and purity of all the testing meth- 633

ods over variational missing ratios are presented in Fig. 3. 634

It is clear that the latest proposed MKKM-IK pro- 635

vides unsatisfactory results on UCI-Digital, which is even 636

worse than MKKM+KNN. However, LI-MKKM significantly 637

outperforms the second-best one (MKKM + KNN) by 638

22.2%, 21.9%, 20.6%, 19.5%, 17.9%, 17.9%, 20.4%, 23.8%, 639

and 23.2% on accuracy. In addition, the proposed LI-MKKM- 640

MR further consistently improves the clustering performance 641

of LI-MKKM. The aggregated clustering results in Table V 642

also denote the same performance. 643

Experiments on the Protein Fold Prediction Dataset: In 644

this experiment, the protein fold dataset is applied to eval- 645

uate the testing methods, and we report all results in Fig. 4 646

and Table VI. Also, we can find that our LI-MKKM-MR also 647

achieves much better results than the rest algorithms on ACC, 648

NMI, and purity on the dataset. 649

Experiments on the Reuters Dataset: The clustering 650

performance in terms of ACC, NMI, and purity with the vari- 651

ation of missing ratios on Reuters is plotted in Fig. 5. As 652

seen, our proposed algorithm once again demonstrates signif- 653

icant superiority over the compared ones. We also report the 654

aggregated ACC, NMI, and purity in Table VII, which also 655

verify the effectiveness of the proposed LI-MKKM-MR. The 656
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2. Clustering ACC, NMI, and purity comparison with the variation of missing ratios on Caltech102-20, Caltech102-25, and Caltech102-30. (a) ACC
with missing ratios on Caltech102-20. (b) NMI with missing ratios on Caltech102-20. (c) Purity with missing ratios on Caltech102-20. (d) ACC with missing
ratios on Caltech102-25. (e) NMI with missing ratios on Caltech102-25. (f) Purity with missing ratios on Caltech102-25. g) ACC with missing ratios on
Caltech102-30. (h) NMI with missing ratios on Caltech102-30. (i) Purity with missing ratios on Caltech102-30.

TABLE IV
TOTAL ACC, NMI, AND PURITY COMPARISON (MEAN ± STD) OF VARIOUS CLUSTERING ALGORITHMS ON CALTECH102.

ON ACCOUNT OF OUT OF MEMORY, THE CLUSTERING RESULTS OF MVEC [43] ON CALTECH102-15,
CALTECH102-20, CALTECH102-25, AND CALTECH102-30 ARE NOT REPORTED

results of MVEC [43] and CG-IMVC [44] on Reuters are not657

reported due to out of memory.658

In short, we summarize that our algorithm has three659

advantages.660

1) Joint Optimization Based on Imputation and Clustering: 661

First, the process of imputation is guided by the clus- 662

tering results, which makes the imputation more direct 663

to the final goal. Second, refining the clustering results 664
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Fig. 3. Clustering ACC, NMI, and purity comparison with the variation of missing ratios on the UCI-digital dataset.

TABLE V
TOTAL ACC, NMI, AND PURITY COMPARISON (MEAN ± STD) OF VARIOUS CLUSTERING ALGORITHMS ON UCI-DIGITAL

Fig. 4. Clustering ACC, NMI, and purity comparison with the variation of missing ratios on the protein Fold Prediction dataset.

TABLE VI
TOTAL ACC, NMI, AND PURITY COMPARISON (MEAN ± STD) OF VARIOUS CLUSTERING ALGORITHMS ON THE PROTEIN FOLD DATASET

can benefits from this meaningful imputation. These two665

learning processes work well together, thus leading to666

the clustering performance improvement. In contrast,667

MKKM + MF, MKKM + KNNMKKM + ZF, and668

MKKM + AF algorithms do not fully make use of669

the connection between the imputation and clustering670

procedures. This may produce imputation, which does671

not well serve the subsequent clustering as originally672

expected, affecting the clustering performance.673

2) Considerably Utilizing Data’s Local Structure: Our local674

kernel alignment criterion is flexible and it makes675

the prespecified kernels aligned for better clustering676

performance.677

3) Well Considering the Correlation of Incomplete Base 678

Kernels: The incorporated matrix-induced regularization 679

reduces the high redundancy and enforces low diver- 680

sity among the selected kernels, making the prespecified 681

kernels be well utilized. 682

These factors have led to significant improvements in cluster 683

performance. 684

C. Reconstruction Error Comparison of LI-MKKM-MR 685

In this section, we evaluate the reconstruction errors of 686

the LI-MKKM-MR with the aforementioned algorithms on all 687

benchmark datasets. To do this, we calculate the reconstruction 688

error between the ground-truth kernels and the imputed ones 689
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Fig. 5. Clustering ACC, NMI, and purity comparison with the variation of missing ratios on Reuters.

TABLE VII
AGGREGATED ACC, NMI, AND PURITY COMPARISON (MEAN ± STD) OF VARIOUS CLUSTERING ALGORITHMS ON REUTERS

Fig. 6. Reconstruction error comparison of the compared algorithms with the variation of missing ratios on benchmark datasets.

via
∑m

p=1 ‖Kp(sp, sp)−K̂p(sp, sp)‖2, where Kp and K̂p denote690

the ground-truth and the imputed one, and sp denotes the miss-691

ing indices of the pth view. The results under various missing692

ratios are shown in Fig. 6. As observed, the kernels imputed by693

our algorithm align with the ground-truth kernels are compara-694

ble or slightly better when compared to those obtained by the695

existing imputation algorithms. Note that our ultimate goal in696

this work is clustering, while imputation is only a by-product.697

How to impute the missing views which not only achieves bet-698

ter clustering performance but also produces better imputation699

result is worth further exploring.700

D. Parameter Sensitivity of LI-MKKM-MR 701

In this part, we analyze that relationship between the cluster- 702

ing performance and matrix-induced regularization. Referring 703

to (10), LI-MKKM-MR induces the ratio of the nearest 704

neighbors τ and regularization parameter λ. In the follow- 705

ing, we conduct another experiment to show the variation of 706

performance among different τ and λ on the Flower17 dataset. 707

Fig. 7(a) and (b) shows the ACC and NMI of our algorithm 708

by varying τ in a huge range [0.02 : 0.02 : 0.2] with λ = 2−6. 709

From these figures, we can find that: 1) ACC fluctuates with 710

the monotonically increasing of τ and 2) the start points of the 711



IE
EE P

ro
of

12 IEEE TRANSACTIONS ON CYBERNETICS

(a) (b) (c) (d)

Fig. 7. Sensitivity of the proposed LI-MKKM-MR with the variation of λ and τ . (a) ACC with variation of τ on Flower17. (b) NMI with variation of τ on
Flower17. (c) ACC with variation of λ on Flower17. (d) NMI with variation of λ on Flower17.

Fig. 8. Proposed algorithm convergence illustration.

ACC curves are typically higher than the end points, which712

induces that when the matrix-induced regularization term is713

dominated at ending points while the local kernel alignment714

maximization is dominated at starting points. These obser-715

vations verify the successful joint preservation of the local716

structure of data and the matrix-induced regularization term717

in our algorithm. Similarly, Fig. 7(c) and 7(d) presents the718

ACC and NMI of our algorithms by tuning λ from 2−9 to 2719

with τ = 0.1. In this scenario, our algorithm also shows stable720

performance over variational λ.721

As aforementioned, we conclude that compared to only722

preserving global kernel alignment, such as MKKM-IK723

in [36], our proposed algorithms are more essential to the724

clustering performance by preserving the local structure of725

data. Meanwhile, the clustering performance could be further726

improved by incorporating the correlation among base kernels.727

By appropriately integrating these two factors, it is possible728

to obtain the best clustering performance. Practically, there729

exists a tradeoff between the preservation of the local geo-730

metric structure and the correlation of base kernels to ensure731

the best clustering.732

E. Convergence of LI-MKKM-MR733

According to [46], the convergence of our proposed algo-734

rithm is guaranteed. We present one simulation trail of the735

proposed LI-MKKM-MR on the Flower 17 dataset as an exam-736

ple in 8. It is clearly shown that the objective value of the737

proposed algorithm is monotonically decreased and converges738

in a few iteration.739

V. CONCLUSION740

Though the newly proposed LI-MKKM is able to tackle741

the task of MKC with incomplete kernels, it takes the742

correlation among base kernels into account insufficiently. 743

We proposed to calculate the kernel alignment to address 744

this issue together with matrix-induced regularization in a 745

local manner. The proposed algorithm efficiently solves the 746

resultant optimization problem, and extensive experiments on 747

benchmarks have demonstrated that LI-MKKM-MR consis- 748

tently outperforms state-of-the-art baseline algorithms. In the 749

future, we will design efficient and effective algorithms to 750

solve the optimization problem directly without approximating 751

M in (9). 752
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